Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600501
Title: Optimising routing and trustworthiness of ad hoc networks using swarm intelligence
Author: Amin, Saman Hameed
ISNI:       0000 0004 5351 446X
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis proposes different approaches to address routing and security of MANETs using swarm technology. The mobility and infrastructure-less of MANET as well as nodes misbehavior compose great challenges to routing and security protocols of such a network. The first approach addresses the problem of channel assignment in multichannel ad hoc networks with limited number of interfaces, where stable route are more preferred to be selected. The channel selection is based on link quality between the nodes. Geographical information is used with mapping algorithm in order to estimate and predict the links’ quality and routes life time, which is combined with Ant Colony Optimization (ACO) algorithm to find most stable route with high data rate. As a result, a better utilization of the channels is performed where the throughput increased up to 74% over ASAR protocol. A new smart data packet routing protocol is developed based on the River Formation Dynamics (RFD) algorithm. The RFD algorithm is a subset of swarm intelligence which mimics how rivers are created in nature. The protocol is a distributed swarm learning approach where data packets are smart enough to guide themselves through best available route in the network. The learning information is distributed throughout the nodes of the network. This information can be used and updated by successive data packets in order to maintain and find better routes. Data packets act like swarm agents (drops) where they carry their path information and update routing information without the need for backward agents. These data packets modify the routing information based on different network metrics. As a result, data packet can guide themselves through better routes. In the second approach, a hybrid ACO and RFD smart data packet routing protocol is developed where the protocol tries to find shortest path that is less congested to the destination. Simulation results show throughput improvement by 30% over AODV protocol and 13% over AntHocNet. Both delay and jitter have been improved more than 96% over AODV protocol. In order to overcome the problem of source routing introduced due to the use of the ACO algorithm, a solely RFD based distance vector protocol has been developed as a third approach. Moreover, the protocol separates reactive learned information from proactive learned information to add more reliability to data routing. To minimize the power consumption introduced due to the hybrid nature of the RFD routing protocol, a forth approach has been developed. This protocol tackles the problem of power consumption and adds packets delivery power minimization to the protocol based on RFD algorithm. Finally, a security model based on reputation and trust is added to the smart data packet protocol in order to detect misbehaving nodes. A trust system has been built based on the privilege offered by the RFD algorithm, where drops are always moving from higher altitude to lower one. Moreover, the distributed and undefined nature of the ad hoc network forces the nodes to obligate to cooperative behaviour in order not to be exposed. This system can easily and quickly detect misbehaving nodes according to altitude difference between active intermediate nodes.
Supervisor: Al-Raweshidy, Hamed Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.600501  DOI: Not available
Keywords: River formation dynamics optimization ; Ant colony optimization ; Smart data packet ; Routing security
Share: