Use this URL to cite or link to this record in EThOS:
Title: Modelling and extraction of fundamental frequency in speech signals
Author: Pawi, Alipah
ISNI:       0000 0004 5351 3774
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
One of the most important parameters of speech is the fundamental frequency of vibration of voiced sounds. The audio sensation of the fundamental frequency is known as the pitch. Depending on the tonal/non-tonal category of language, the fundamental frequency conveys intonation, pragmatics and meaning. In addition the fundamental frequency and intonation carry speaker gender, age, identity, speaking style and emotional state. Accurate estimation of the fundamental frequency is critically important for functioning of speech processing applications such as speech coding, speech recognition, speech synthesis and voice morphing. This thesis makes contributions to the development of accurate pitch estimation research in three distinct ways: (1) an investigation of the impact of the window length on pitch estimation error, (2) an investigation of the use of the higher order moments and (3) an investigation of an analysis-synthesis method for selection of the best pitch value among N proposed candidates. Experimental evaluations show that the length of the speech window has a major impact on the accuracy of pitch estimation. Depending on the similarity criteria and the order of the statistical moment a window length of 37 to 80 ms gives the least error. In order to avoid excessive delay as a consequence of using a longer window, a method is proposed ii where the current short window is concatenated with the previous frames to form a longer signal window for pitch extraction. The use of second order and higher order moments, and the magnitude difference function, as the similarity criteria were explored and compared. A novel method of calculation of moments is introduced where the signal is split, i.e. rectified, into positive and negative valued samples. The moments for the positive and negative parts of the signal are computed separately and combined. The new method of calculation of moments from positive and negative parts and the higher order criteria provide competitive results. A challenging issue in pitch estimation is the determination of the best candidate from N extrema of the similarity criteria. The analysis-synthesis method proposed in this thesis selects the pitch candidate that provides the best reproduction (synthesis) of the harmonic spectrum of the original speech. The synthesis method must be such that the distortion increases with the increasing error in the estimate of the fundamental frequency. To this end a new method of spectral synthesis is proposed using an estimate of the spectral envelop and harmonically spaced asymmetric Gaussian pulses as excitation. The N-best method provides consistent reduction in pitch estimation error. The methods described in this thesis result in a significant improvement in the pitch accuracy and outperform the benchmark YIN method.
Supervisor: Vaseghi, S. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Pitch ; Speech signals ; Fundamental period ; Speech synthesis ; Speech parameters