Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600465
Title: A generic predictive information system for resource planning and optimisation
Author: Tavakoli, Siamak
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The purpose of this research work is to demonstrate the feasibility of creating a quick response decision platform for middle management in industry. It utilises the strengths of current, but more importantly creates a leap forward in the theory and practice of Supervisory and Data Acquisition (SCADA) systems and Discrete Event Simulation and Modelling (DESM). The proposed research platform uses real-time data and creates an automatic platform for real-time and predictive system analysis, giving current and ahead of time information on the performance of the system in an efficient manner. Data acquisition as the backend connection of data integration system to the shop floor faces both hardware and software challenges for coping with large scale real-time data collection. Limited scope of SCADA systems does not make them suitable candidates for this. Cost effectiveness, complexity, and efficiency-orientation of proprietary solutions leave space for more challenge. A Flexible Data Input Layer Architecture (FDILA) is proposed to address generic data integration platform so a multitude of data sources can be connected to the data processing unit. The efficiency of the proposed integration architecture lies in decentralising and distributing services between different layers. A novel Sensitivity Analysis (SA) method called EvenTracker is proposed as an effective tool to measure the importance and priority of inputs to the system. The EvenTracker method is introduced to deal with the complexity systems in real-time. The approach takes advantage of event-based definition of data involved in process flow. The underpinning logic behind EvenTracker SA method is capturing the cause-effect relationships between triggers (input variables) and events (output variables) at a specified period of time determined by an expert. The approach does not require estimating data distribution of any kind. Neither the performance model requires execution beyond the real-time. The proposed EvenTracker sensitivity analysis method has the lowest computational complexity compared with other popular sensitivity analysis methods. For proof of concept, a three tier data integration system was designed and developed by using National Instruments’ LabVIEW programming language, Rockwell Automation’s Arena simulation and modelling software, and OPC data communication software. A laboratory-based conveyor system with 29 sensors was installed to simulate a typical shop floor production line. In addition, EvenTracker SA method has been implemented on the data extracted from 28 sensors of one manufacturing line in a real factory. The experiment has resulted 14% of the input variables to be unimportant for evaluation of model outputs. The method proved a time efficiency gain of 52% on the analysis of filtered system when unimportant input variables were not sampled anymore. The EvenTracker SA method compared to Entropy-based SA technique, as the only other method that can be used for real-time purposes, is quicker, more accurate and less computationally burdensome. Additionally, theoretic estimation of computational complexity of SA methods based on both structural complexity and energy-time analysis resulted in favour of the efficiency of the proposed EvenTracker SA method. Both laboratory and factory-based experiments demonstrated flexibility and efficiency of the proposed solution.
Supervisor: Mousavi, A. Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.600465  DOI: Not available
Keywords: Real time data acquisition ; Real time modelling and simulation ; Sensitivity analysis ; Event tracking ; Computational complexity
Share: