Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600372
Title: The role of mechanical resonance in physiological tremor
Author: Vernooij, Carlijn Andrea
ISNI:       0000 0004 5351 3459
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The origin of physiological tremor has been studied for many years. Several central and spinal mechanisms which provide an oscillatory input to the muscles have been proposed. Nevertheless, any neural control signal inevitably has to work upon a resonant peripheral system involving the series-coupled elastic muscle-tendon complex and the inertia of the limb. In this thesis I look into the potential role for mechanical resonance to explain tremor. First, I show that the resonant component of hand tremor depends on the velocity of hand movement. Movement reduces muscle stiffness (a process called muscle thixotropy) and the tremor frequency falls. Second, I demonstrate that rhythmic tremor is abolished when eliminating resonance by recording tremor in isometric conditions. Third, I replaced EMG by an artificial drive. This generated tremor which behaved similarly to physiological postural and dynamic tremor. Finally, I studied the relationship between EMG and tremor in the transition from posture to movement. Muscle converts EMG into acceleration differently for static and moving limbs. These findings suggest that there is a key role for mechanical resonance in the generation of physiological tremor. A frequency-specific neural input is not necessary to produce any of the characteristic peaks in postural or dynamic tremor.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.600372  DOI: Not available
Keywords: RC1200 Sports Medicine
Share: