Use this URL to cite or link to this record in EThOS:
Title: Indirect conversion radioisotopic battery for buried asset condition monitoring
Author: Walton, Robert
ISNI:       0000 0004 5350 7024
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Jan 2025
Access from Institution:
An indirect conversion radioisotopic battery (ICRB) and capacitor power source was designed, simulated, manufactured and tested in this research. All ICRBs manufactured during this research used tritium (\(^3\)H) as the radioisotope in the form of gaseous tritium light sources (GTLSs). The operation of an ICRB was theoretically modelled from the generation of radiation particles right up to the storage of electrical energy in the capacitor. Comparison of simulation results with laboratory testing found close agreement particularly in the area of GTLS light emission, though the photovoltaic cell model was found to require further improvement. The ICRB was designed to provide power to a wireless sensor network (WSN) sensor node which would be buried underground and would report on the condition of a buried asset (e.g. water pipe). The most powerful ICRB generated 1.6\(\mu\)W, 60% more than the 1.0\(\mu\)W necessary to power a WSN sensor node. This ICRB would provide useful power to the WSN sensor node for 4.24 years. The greatest achieved efficiency of ICRB and capacitor system was 0.6% which compares favourably with ICRBs produced by other researchers. An ICRB was buried on a working water pipe for a duration exceeding two months and continues to function as predicted.
Supervisor: Not available Sponsor: United Kingdom Water Industry Research
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TJ Mechanical engineering and machinery