Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600114
Title: The exploratory behaviour of Candida albicans hyphae
Author: Thomson, Darren David
ISNI:       0000 0004 5350 0930
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Cells that grow by apical extension, such as neurons, pollen tubes, root hairs and fungal hyphae, orient their growth in response to tip contact with physical cues in the environment (thigmotropism). I use Candida albicans, an opportunistic human fungal pathogen, as a model to assess tip re-orientation growth responses after contact. Thigmotropism is associated with virulence (Brand et al., 2008), therefore this thesis aims to characterise the responses that C. albicans displays after contact events in an enclosed chamber featuring various obstacles and shapes. It was found that hyphae grow along surfaces in a nose-down manner, presumably to identify and exploit gaps in the substrate. Further, hyphae preferentially grow nose-down on softer surfaces when given the option of two contrasting surfaces, implying novel substrate sensing mechanisms. Contact-dependent hyphal responses are outlined, where perpendicular contact with an obstacle induced various growth responses after re-orientation. Further, important cytoskeletal regulators of thigmotropism were identified, which subsequently regulate substrate indentations. The applied force generated by hyphal tips was quantified, which was enough to penetrate mammalian membranes without the need of hydrolytic enzymes, and this was modulated by a change in environmental carbon source. This thesis describes several new exploratory behaviours in C. albicans, which may apply to hyphae in general, since behaviours described here have also been observed in other filamentous fungi. Further, the role of septins as regulators of directional growth is discussed. The first chapter describes contact-dependent behaviours that support the ability of hyphae to be opportunistic and exploit their topographical environment to invade surfaces. The second chapter presents a detailed description of how the fungus responds to perpendicular contact events. Finally, the third chapter identifies cytoskeletal regulators important for thigmotropism. Together, this thesis brings together multiple aspects of cell biology and biophysics that apply during polarised tip growth, which adds knowledge to the narrative of why hyphae are such successful space invaders.
Supervisor: Not available Sponsor: Biotechnology and Biological Sciences Research Council (BBSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.600114  DOI: Not available
Share: