Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598295
Title: Power suppressed corrections in quantum chromodynamics
Author: Dasgupta, M.
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 1998
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
Abstract:
The purpose of the research described in this dissertation, is to establish a bridge between perturbative and non-perturbative aspects of QCD. While it is remarkable that the factorisation theorems of QCD allow one the freedom to carry out perturbative calculations in most cases of interest, it cannot be forgotten that perturbation theory can never provide a complete description of strong interaction phenomena. The factorisation theorems themselves make allowance for non-perturbative effects by parametrising them through parton distributions and fragmentation functions, which has given rise to what has become known as QCD phenomenology. In this dissertation we adopt a phenomenological approach to the study of a certain class of non-perturbative effects which are manifested in terms that behave as an inverse power of the relevant hard scale. The idea underlying our approach is to examine the ambiguity of the perturbative series and then interpret it as representing non-perturbative effects. To make quantitative estimates we adopt an approach in which our predictions depend on supposedly universal parameters that can be extracted from experiment in the same spirit as parton distributions. These parameters are the moments of the strong coupling, which is assumed infrared finite. Within this approach we can relate the power corrections to different observables, due to the universality assumption. Knowledge of these parameters can be employed to constrain the form of the strong coupling at small scales which may allow a unique glimpse into the confinement domain. In this dissertation we make unambiguous predictions for power corrections to a wide variety of observables. These include DIS structure functions, fragmentation functions in both e+e- annihilation and DIS, and event shape variables. In most cases we observe that there is good support for the predictions made here, from experimental data.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.598295  DOI: Not available
Share: