Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596012
Title: Stochastic modeling and methods for portfolio management in cointegrated markets
Author: Angoshtari, Bahman
ISNI:       0000 0004 5349 8156
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
In this thesis we study the utility maximization problem for assets whose prices are cointegrated, which arises from the investment practice of convergence trading and its special forms, pairs trading and spread trading. The major theme in the first two chapters of the thesis, is to investigate the assumption of market-neutrality of the optimal convergence trading strategies, which is a ubiquitous assumption taken by practitioners and academics alike. This assumption lacks a theoretical justification and, to the best of our knowledge, the only relevant study is Liu and Timmermann (2013) which implies that the optimal convergence strategies are, in general, not market-neutral. We start by considering a minimalistic pairs-trading scenario with two cointegrated stocks and solve the Merton investment problem with power and logarithmic utilities. We pay special attention to when/if the stochastic control problem is well-posed, which is overlooked in the study done by Liu and Timmermann (2013). In particular, we show that the problem is ill-posed if and only if the agent’s risk-aversion is less than a constant which is an explicit function of the market parameters. This condition, in turn, yields the necessary and sufficient condition for well-posedness of the Merton problem for all possible values of agent’s risk-aversion. The resulting well-posedness condition is surprisingly strict and, in particular, is equivalent to assuming the optimal investment strategy in the stocks to be market-neutral. Furthermore, it is shown that the well-posedness condition is equivalent to applying Novikov’s condition to the market-price of risk, which is a ubiquitous sufficient condition for imposing absence of arbitrage. To the best of our knowledge, these are the only theoretical results for supporting the assumption of market-neutrality of convergence trading strategies. We then generalise the results to the more realistic setting of multiple cointegrated assets, assuming risk factors that effects the asset returns, and general utility functions for investor’s preference. In the process of generalising the bivariate results, we also obtained some well-posedness conditions for matrix Riccati differential equations which are, to the best of our knowledge, new. In the last chapter, we set up and justify a Merton problem that is related to spread-trading with two futures assets and assuming proportional transaction costs. The model possesses three characteristics whose combination makes it different from the existing literature on proportional transaction costs: 1) finite time horizon, 2) Multiple risky assets 3) stochastic opportunity set. We introduce the HJB equation and provide rigorous arguments showing that the corresponding value function is the viscosity solution of the HJB equation. We end the chapter by devising a numerical scheme, based on the penalty method of Forsyth and Vetzal (2002), to approximate the viscosity solution of the HJB equation.
Supervisor: Zariphopoulou, Thaleia; Lyons, Terry Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.596012  DOI: Not available
Keywords: Mathematical finance ; Calculus of variations and optimal control ; Probability theory and stochastic processes ; Econometrics ; convergence trading; pairs trading; market neutrality; expected utility; cointegration; error correction model; well posedness; Riccati equation; proportional transaction costs; penalty method
Share: