Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595988
Title: Emergent social structure and collective behaviour from individual decision-making in wild birds
Author: Farine, Damien R.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Social behaviour is shaped by complex relationships between evolutionary and ecological processes interacting at different scales. Benefits gained from social associations can range from predator dilution to collective sensing, but little is known about how these can be influenced by social structure and phenotypic composition. In this thesis, I investigated how individual decision-making affects phenotypic social structure, and how this mediates social behaviour through emergent properties of collective group behaviour. First, using mixed-species flocks as a model system, I showed individual tits (Paridae, chapter 2) and thornbills (Acanthizae, chapter 3) varied significantly in their social positions. Within-species variation in network position was as large as between-species variation, sug- gesting that prescribing functional roles at the species level may not sufficiently account for potential differences in fitness operating at the individual level. Rather, this suggested that structure may be driven by phenotypic traits, underpinning network structure (chapter 4). Next, I used an extensive data set of foraging records to explore factors determining the composition, of flocks of great tits (Parus major, chapter 5). For example, assortment by dispersal phenotype (immigration status) was the result of spatial disaggregation, and I showed that this may facilitate social selection for breeding territories (chapter 6). Finally, I investigated how decision-making shaped mixed-species social structure. I found that tits used a common strategy for managing pressures of predation and starvation by shifting from exploration to exploitation at different times of the day (chapter 7). I then found that a very simple interaction rule successfully replicated mixed-species group structure (chapter 8). Strikingly, the same rule was applied to both conspecifics and het- erospecifics, potentially playing an important role in the maintenance of flock structure. Through experimental manipulation of ecological conditions, I found that heightened per- ceived predation resulted in stronger social attraction overall, whereas increased competition led to a reduction in attraction to conspecifics (chapter 9). Simulations suggested this could be one potential mechanism underpinning fission-fusion dynamics in these species. Together, the results in this thesis form a framework linking social behaviour to individ- ual fitness where natural selection is shaped by the social environment. This approach may prove useful for testing whether following common social rules reduces variance in benefits accrued by individuals, and how within-species variation in social behaviour can impact emergent properties of groups.
Supervisor: Sheldon, Ben C.; Garroway, Colin J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.595988  DOI: Not available
Keywords: Behaviour (zoology) ; Ecology (zoology) ; Evolution (zoology) ; Collective behaviour ; Ornithology ; Paridae ; Social behaviour ; Social networks ; Mixed-species flocking ; Social selection ; Interspecific interactions ; Wytham Woods ; Self-organisation
Share: