Use this URL to cite or link to this record in EThOS:
Title: Topics on backward stochastic differential equations : theoretical and practical aspects
Author: Lionnet, Arnaud
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
This doctoral thesis is concerned with some theoretical and practical questions related to backward stochastic differential equations (BSDEs) and more specifically their connection with some parabolic partial differential equations (PDEs). The thesis is made of three parts. In the first part, we study the probabilistic representation for a class of multidimensional PDEs with quadratic nonlinearities of a special form. We obtain a representation formula for the PDE solution in terms of the solutions to a Lipschitz BSDE. We then use this representation to obtain an estimate on the gradient of the PDE solutions by probabilistic means. In the course of our analysis, we are led to prove some results for the associated multidimensional quadratic BSDEs, namely an existence result and a partial uniqueness result. In the second part, we study the well-posedness of a very general quadratic reflected BSDE driven by a continuous martingale. We obtain the comparison theorem, the special comparison theorem for reflected BSDEs (which allows to compare the increasing processes of two solutions), the uniqueness and existence of solutions, as well as a stability result. The comparison theorem (from which uniqueness follows) and the special comparison theorem are obtained through natural techniques and minimal assumptions. The existence is based on a perturbative procedure, and holds for a driver whis is Lipschitz, or slightly-superlinear, or monotone with arbitrary growth in y. Finally, we obtain a stability result, which gives in particular a local Lipschitz estimate in BMO for the martingale part of the solution. In the third and last part, we study the time-discretization of BSDEs having nonlinearities that are monotone but with polynomial growth in the primary variable. We show that in that case, the explicit Euler scheme is likely to diverge, while the implicit scheme converges. In fact, by studying the family of θ-schemes, which are mixed explicit-implicit, θ characterizing the degree of implicitness, we find that the scheme converges when the implicit component is dominant (θ ≥ 1/2 ). We then propose a tamed explicit scheme, which converges. We show that the implicit-dominant schemes with θ > 1/2 and our tamed explicit scheme converge with order 1/2 , while the trapezoidal scheme (θ = 1/2) converges with order 7/4.
Supervisor: Qian, Zhongmin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Mathematics ; Probability theory and stochastic processes ; stochastic analysis ; stochastic processes ; martingales ; backward stochastic differential equations ; Feynman-Kac formula ; numerical methods