Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595568
Title: Dehydration of alcohols using solid acid catalysts
Author: Cholerton, Mary
ISNI:       0000 0004 5349 0496
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differences observed between aluminophosphate frameworks both in terms of selectivity to the desired product but also in terms of the nature of the silicon substitution and the active sites. Links have been made between these properties and the observed catalytic behaviour. The effect of the catalytic framework is further explored though the testing of cobalt substituted aluminophosphates for ethanol dehydration. Silicon substituted aluminophosphates have been tested for the dehydration of 1-phenylethanol to styrene as an example of catalysis in the liquid phase. Here the influence of framework was particularly significant due to the large substrate. The effect of redox metals in the aluminophosphate framework has been investigated through the use of calcined and pre-reduced cobalt substituted aluminophosphates for the dehydration of ethanol to ethylene. Analysis of the catalytic product stream was combined with UV-Visible measurements to investigate potential redox processes occurring during the reaction time on stream and the influence of the oxidation state of the redox metal on the catalytic products of the reaction.
Supervisor: Raja, Robert Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.595568  DOI: Not available
Keywords: QD Chemistry
Share: