Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594621
Title: Characterisation and optimisation of the mechanical performance of plant fibre composites for structural applications
Author: Shah, Darshil Upendra
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Plant fibres, perceived as environmentally sustainable substitutes to E-glass, are increasingly being employed as reinforcements in polymer matrix composites. However, despite the promising technical properties of cellulose-based fibres and the historic use of plant fibre composites (PFRPs) in load-bearing components, the industrial uptake of PFRPs in structural applications has been limited. In developing PFRPs whose mechanical properties are well-characterised, optimised and well-predicted, this thesis addresses the question: Can PFRPs replace E-glass composites (GFRPs) in structural applications? Ensuring that the highest reinforcement potential is exploited, this research examines the mechanical properties of aligned PFRPs based on bast fibre yarns/rovings and thermoset matrices. Although aligned GFRPs are found to outperform aligned PFRPs in terms of absolute mechanical properties, PFRPs reinforced with flax rovings exhibit exceptional properties, with a back-calculated fibre tensile modulus of up to 75 GPa and fibre tensile strength of about 800 MPa. To identify the processing window which produces composites with useful properties, the minimum, critical and maximum fibre volume fraction of PFRPs have been determined, and compared to that of synthetic fibre reinforced composites. The effect of fibre volume fraction on the physical and tensile properties of aligned PFRPs has also been investigated. Furthermore, micro-mechanical models have been developed and experimentally validated, to reliably predict the effect of (mis)orientation, in the forms of yarn twist/construction and off-axis loading, on the tensile properties of aligned PFRPs. To provide a complete set of fatigue data on aligned PFRPs, the effect of various composite parameters on PFRP cyclic-loading behaviour has been illustrated through S-N lifetime diagrams. A constant-life diagram has also been generated to enable the fatigue design and life prediction of a PFRP component. At each stage, the fatigue performance of PFRPs has been compared to that of GFRPs. Finally, in directly addressing the main theme, this thesis adopts a novel comparative case study approach to investigate the manufacture and mechanical testing of full-scale 3.5-meter composite rotor blades (suitable for 11 kW turbines) built from flax/polyester and E-glass/polyester. The study claims that under current market conditions, optimised plant fibre reinforcements are a structural, but not low-cost or sustainable, alternative to conventional E-glass reinforcements.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.594621  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General)
Share: