Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594371
Title: A gene regulatory network model for control
Author: Krohn, J. P.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The activity of a biological cell is regulated by interactions between genes and proteins. In artificial intelligence, this has led to the creation of developmental gene regulatory network (GRN) models which aim to exploit these mechanisms to algorithmically build complex designs. The emerging field of GRNs for control aims to instead exploit these natural mechanisms and this ability to encode a large variety of behaviours within a single evolvable genetic program for the solution of control problems. This work aims to extend the application domain of GRN models to previously unsolved control problems; the focus will here be on reinforcement learning problems, in which the dynamics of the system controlled are kept from the controller and only sparse feedback is given to it. This category of problems closely matches the challenges faced by natural evolution in generating biological GRNs. Starting with an existing GRN model, the fractal GRN (FGRN) model, a successful application to a standard control problem will be presented, followed by multiple improvements to the FGRN model and its associated genetic algorithm, resulting in better performances in terms of both reliability and speed. Limitations will be identified in the FGRN model, leading to the introduction of the Input-Merge- Regulate-Output (IMRO) architecture for GRN models, an implementation of which will show both quantitative and qualitative improvements over the FGRN model, solving harder control problems. The resulting model also displays useful features which should facilitate further extension and real-world use of the system.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.594371  DOI: Not available
Share: