Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589645
Title: Linear and nonlinear optics in coupled waveguide arrays
Author: De Nobriga, Charles
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The following thesis is comprised of four main areas of work. These are centred around the experimental observation of phenomena associated with both linear and non-linear optics in silicon photonic-wires. As a comparison, I also discuss a similar coupled-waveguide system; dual-core hollow-core photonic crystal fibre. To introduce the reader to this work, the first chapter will recap some undergraduate level theory; a general introduction to optical waveguides. It is not intended to be a complete theoretical picture, as many beautiful texts on optics already exist [1–3]. This chapter concerns itself only with the aspects of optics with which the author was intimately aware of throughout the completion of this thesis. Thereafter, the chapters become specific to the particular experiments undertaken. Each one follows a simple framework: examination of the relevant theory, extending upon that already discussed in the first chapter, a literature review and finally a discussion of the work I completed within this thesis. Chapter 2 is the only chapter not related to silicon based photonics. Here I discuss dual-core hollow-core photonic crystal fibres; including guidance mechanisms, fabrication methods and the numerical modelling techniques employed in my work. I will compare these numerical results to experimental results taken by colleagues at the university of Bath. Chapter 3 analyses linear propagation in arrays of silicon photonic wires. I extend the simple picture of light propagating in waveguides to discuss the di↵erent types of dispersion inherent in this system and how dispersion tailoring can be achieved; with reference to the other literature on this topic. Experimental results are examined and discussed. Chapters 4 and 5 discuss non-linear propagation in silicon photonic wire arrays; modulation instability and spatio-temporal solitons respectively. In each case I extend the ideas on non-linearity presented in Chapter 1 to explain both modulation instability and optical solitons. Detailed descriptions of the experiments undertaken, and associated numerical modelling completed are then discussed. Whilst the work I present is incomplete, I will discuss subsequent work performed by my colleagues at the University of Bath based on my initial work. Finally, Chapter 6 draws together my conclusions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.589645  DOI: Not available
Share: