Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.587813
Title: Multichannel distributed coordination for wireless sensor networks : convergence delay and energy consumption aspects
Author: Buranapanichkit, D.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
This thesis develops new approaches for distributed coordination of data-intensive communications between wireless sensor nodes. In particular, the topic of synchronization, and its dual primitive, desynchronization at the Medium Access Control (MAC) or the Application (APP) layer of the OSI stack, is studied in detail. In Chapters 1 and 2, the related literature on the problem of synchronization is overviewed and the main approaches for distributed (de)synchronization at the MAC or APP layers are analyzed, designed and implemented on IEEE802.15.4- enabled wireless sensor nodes. Beyond the experimental validation of distributed (de)synchronization approaches, the three main contributions of this thesis, corresponding to the related publications found below, are: • establishing for the first time the expected time for convergence to distributed time division multiple access (TDMA) operation under the two main desynchronization models proposed in the literature and validating the derived estimates via a real-world implementation (Chapter 3); • proposing the extension of the main desynchronization models towards multi-hop and multi-channel operation; the latter is achieved by extending the concept of reactive listening to multi-frequency operation (Chapter 4 and 5). • analyzing the energy consumption of the distributed TDMA approach under different transmission probability density functions (Chapter 6 and 7). Conclusions and items for future work in relation to the proposals of this thesis are described in Chapter 8.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.587813  DOI: Not available
Share: