Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.586499
Title: Dynamic alpha-invariants of del Pezzo surfaces with boundary
Author: Martinez Garcia, Jesus
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The global log canonical threshold, algebraic counterpart to Tian's alpha-invariant, plays an important role when studying the geometry of Fano varieties. In particular, Tian showed that Fano manifolds with big alpha-invariant can be equipped with a Kahler-Einstein metric. In recent years Donaldson drafted a programme to precisely determine when a smooth Fano variety X admits a Kahler-Einstein metric. It was conjectured that the existence of such a metric is equivalent to X being K-stable, an algebraic-geometric property. A crucial step in Donaldson's programme consists on finding a Kahler-Einstein metric with edge singularities of small angle along a smooth anticanonical boundary. Jeffres, Mazzeo and Rubinstein showed that a dynamic version of the alpha-invariant could be used to find such metrics. The global log canonical threshold measures how anticanonical pairs fail to be log canonical. In this thesis we compute the global log canonical threshold of del Pezzo surfaces in various settings. First we extend Cheltsov's computation of the global log canonical threshold of complex del Pezzo surfaces to non-singular del Pezzo surfaces over a ground field which is algebraically closed and has arbitrary characteristic. Then we study which anticanonical pairs fail to be log canonical. In particular, we give a very explicit classifiation of very singular anticanonical pairs for del Pezzo surfaces of degree smaller or equal than 3. We conjecture under which circumstances such a classifcation is plausible for an arbitrary Fano variety and derive several consequences. As an application, we compute the dynamic alpha-invariant on smooth del Pezzo surfaces of small degree, where the boundary is any smooth elliptic curve C. Our main result is a computation of the dynamic alpha-invariant on all smooth del Pezzo surfaces with boundary any smooth elliptic curve C. The values of the alpha-invariant depend on the choice of C. We apply our computation to find Kahler-Einstein metrics with edge singularities of angle β along C.
Supervisor: Garcia, Jesus Martinez; Gasparim, Elizabeth; Figueroa-O'Farrill, Jose; Wemyss, Michael; Cheltsov, Ivan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.586499  DOI: Not available
Keywords: Kahler-Einstein metrics ; del Pezzo surfaces ; K-stablility
Share: