Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.586428
Title: Advances in interior point methods and column generation
Author: González Brevis, Pablo
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from unstable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these techniques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solutions are used in the course of the algorithm. Additionally, we present a comprehensive computational study of the solution of linear relaxed formulations obtained after applying the Dantzig-Wolfe decomposition principle to the cutting stock problem (CSP), the vehicle routing problem with time windows (VRPTW), and the capacitated lot sizing problem with setup times (CLSPST). We compare the performance of the PDCGM with the standard column generation method (SCGM) and the analytic centre cutting planning method (ACCPM). Overall, the PDCGM achieves the best performance when compared to the SCGM and the ACCPM when solving challenging instances from a column generation perspective. One important characteristic of this column generation strategy is that no speci c tuning is necessary and the algorithm poses the same level of difficulty as standard column generation method. The natural stabilization available in the PDCGM due to the use of sub-optimal well-centred interior point solutions is a very attractive feature of this method. Moreover, the larger the instance, the better is the relative performance of the PDCGM in terms of column generation iterations and CPU time. The second part of this thesis is concerned with the development of a new warmstarting strategy for the PDCGM. It is well known that taking advantage of the previously solved RMP could lead to important savings in solving the modified RMP. However, this is still an open question for applications arising in an integer optimization context and the PDCGM. Despite the current warmstarting strategy in the PDCGM working well in practice, it does not guarantee full feasibility restorations nor considers the quality of the warmstarted iterate after new columns are added. The main motivation of the design of the new warmstarting strategy presented in this thesis is to close this theoretical gap. Under suitable assumptions, the warmstarting procedure proposed in this thesis restores primal and dual feasibilities after the addition of new columns in one step. The direction is determined so that the modi cation of small components at a particular solution is not large. Additionally, the strategy enables control over the new duality gap by considering an expanded symmetric neighbourhood of the central path. As observed from our computational experiments solving CSP and VRPTW, one can conclude that the warmstarting strategies for the PDCGM are useful when dense columns are added to the RMP (CSP), since they consistently reduce the CPU time and also the number of iterations required to solve the RMPs on average. On the other hand, when sparse columns are added (VRPTW), the coldstart used by the interior point solver HOPDM becomes very efficient so warmstarting does not make the task of solving the RMPs any easier.
Supervisor: Brevis, Pablo Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.586428  DOI: Not available
Keywords: column generation ; interior point methods ; warmstarting ; integer programming
Share: