Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.586402
Title: Wave radiation in simple geophysical models
Author: Murray, Stuart William
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Wave radiation is an important process in many geophysical flows. In particular, it is by wave radiation that flows may adjust to a state for which the dynamics is slow. Such a state is described as “balanced”, meaning there is an approximate balance between the Coriolis force and horizontal pressure gradients, and between buoyancy and vertical pressure gradients. In this thesis, wave radiation processes relevant to these enormously complex flows are studied through the use of some highly simplified models, and a parallel aim is to develop accurate numerical techniques for doing so. This thesis is divided into three main parts. 1. We consider accurate numerical boundary conditions for various equations which support wave radiation to infinity. Particular attention is given to discretely non-reflecting boundary conditions, which are derived directly from a discretised scheme. Such a boundary condition is studied in the case of the 1-d Klein-Gordon equation. The limitations concerning the practical implementation of this scheme are explored and some possible improvements are suggested. A stability analysis is developed which yields a simple stability criterion that is useful when tuning the boundary condition. The practical use of higher-order boundary conditions for the 2-d shallow water equations is also explored; the accuracy of such a method is assessed when combined with a particular interior scheme, and an analysis based on matrix pseudospectra reveals something of the stability of such a method. 2. Large-scale atmospheric and oceanic flows are examples of systems with a wide timescale separation, determined by a small parameter. In addition they both undergo constant random forcing. The five component Lorenz-Krishnamurthy system is a system with a timescale separation controlled by a small parameter, and we employ it as a model of the forced ocean by further adding a random forcing of the slow variables, and introduce wave radiation to infinity by the addition of a dispersive PDE. The dynamics are reduced by deriving balance relations, and numerical experiments are used to assess the effects of energy radiation by fast waves. 3. We study quasimodes, which demonstrate the existence of associated Landau poles of a system. In this thesis, we consider a simple model of wave radiation that exhibits quasimodes, that allows us to derive some explicit analytical results, as opposed to physically realistic geophysical fluid systems for which such results are often unavailable, necessitating recourse to numerical techniques. The growth rates obtained for this system, which is an extension of one considered by Lamb, are confirmed using numerical experiments.
Supervisor: Vanneste, Jacques; Ruffert, Maximilian Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.586402  DOI: Not available
Keywords: geophysical fluid dynamics ; wave radiation ; non-reflecting boundary conditions
Share: