Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.583650
Title: Embedding at electrode surfaces
Author: Merrick, Ian
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Electronic structure calculations are performed on metal surfaces using an embedding method. Firstly, Cu and Ni surfaces with adsorbates are studied. The O/Cu(00T) reconstruction is investigated, and it is found that atomic displacements increase bonding symmetry and is most likely the cause of reconstruction. The interaction between a single graphitic layer and the Ni(III) substrate is also studied, and it is found that interacting states are formed at Ni band gaps. The remainder of the thesis deals with steps on metal surfaces. First, the jellium model is used to calculate the work function dependence on step density. In the low step density limit, the work function varies linearly with step density. Further calculations are performed on realistic Pd and Pt surfaces. When electric fields are applied, the screening charge of stepped surfaces is mostly located at the step edge. This is explained by the increased fields associated with the edge. Field emission from Pd and Pt surfaces is also studied. It is found that Pd is a better emitter than Pt, owing to work function effects. Transmission is dependent on the surface parallel wavevector and decreases with increasing wavevector. The reduced work function also plays a role at stepped surfaces, although the major influence stems from the reduced local work function at the step site. The low effective potential at the step provides a locally reduced barrier to electron removal. In addition, an increase in transmission is seen from non-zero wavevectors for stepped surfaces. The result is that stepped Pd and Pt surfaces, with a step density of one step in every three (001) unit cells, show field emission increased by a factor of four compared with the flat (001) surfaces.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.583650  DOI: Not available
Share: