Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582593
Title: Advanced ROCOF protection of distribution systems
Author: Liu, Bohan
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
When islanding occurs, power supply from the main grid is interrupted which causes a problem when distributed generators continue to provide power into distributed networks. An islanding situation should be detected accurately soon after the island is formed. Because failure to trip the islanded distributed resource can lead to a number of problems for the resource and the connected load. Although ROCOF islanding detection method is the most commonly employed anti-islanding protection technique, it provides fast detection and easily implementation. It is sensitive to the system disturbance. Therefore, the application of the ROCOF relay to detect system islanding has been limited. This thesis proposes a solution to enhance the performance of the ROCOF relay by cooperation with rate of change of power or v2/p interlock function. During system load variation, the false operation of ROCOF relay can be blocked effectively. It is validated by applied in grid-connected synchronous generator, Doubly-fed Induction generator (both simulation and experiment) and microgrid. The principle of rate of change of power or v2/p interlock function are presented in this thesis. The new interlock function v2/p with ROCOF relays works well for different types of DGs within a short detection time without introducing perturbation into the system, which are the advantages over other active and hybrid islanding detection methods. The performances characteristics of ROCOF relays for DGs islanding detection (i.e. frequency measuring methods, measuring windows, generator inertia constant, relay settings and load power factor) are investigated. In addition, two other islanding detection methods (impedance measurement (active method) and the Total Harmonic Method) are applied to the grid-connected DFIG distributed system, the comparison and effectiveness of these two methods utilized in islanding and load changing conditions are also discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.582593  DOI: Not available
Keywords: TK3001 Distribution or transmission of electric power
Share: