Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582339
Title: Piezoelectric microsensors for semiochemical communication
Author: Pathak, Shrey
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Chemical communication plays vital role in the mediating the behaviour of an organism living in the “odour space”. The mechanisms by which odours are generated and detected by the organism has evolved over thousands of years and thus the potential advantages of translating this system into a fully functional communication system has opened new avenues in the area of multi-disciplinary research. This formed the basis of the Biosynthetic Infochemical Communications project – iCHEM whose central aim was to develop a new class of communication technology based on the biosynthesis pathways of the moth, S. littoralis. This novel infochemical communication system would consist of a “chemoemitter” unit which would generate a precise mix of infochemicals which after travelling through the odour space would be detected by a complementary tuned detector – the “chemoreceiver” unit comprising of a ligand specific detection element and an associated biophysical model functioning similar to the antennal lobe neuron of the moth. This combined novel system will have the capability of communicating by the help of chemicals only, in the vapour or liquid phase. For the work presented in this thesis, the novel concept of infochemical communication has been examined in the vapour and liquid phase by employing piezoelectric microsensors. This has been achieved and demonstrated throughout the thesis by employing chemo-specific acoustic wave microsensors. For vapour phase assessment, quartz crystal microbalance, were coated with different organic polymer coatings and incorporated in a prototype infochemical communication system detecting encoded volatiles. For liquid phase assessment, shear horizontal surface acoustic wave (SH-SAW) microsensors were specifically designed and immobilised within Sf9 insect cells. This GPCR based whole cell biosensing system was then employed to detect ligand specific activations thus acting as a precursor to the development of a fully functionalised OR based signalling system, thus contributing to the growing field of communication and labelling technology.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.582339  DOI: Not available
Keywords: TK Electrical engineering. Electronics Nuclear engineering
Share: