Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581392
Title: Operators on Banach spaces of Bourgain-Delbaen type
Author: Tarbard, Matthew
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
The research in this thesis was initially motivated by an outstanding problem posed by Argyros and Haydon. They used a generalised version of the Bourgain-Delbaen construction to construct a Banach space $XK$ for which the only bounded linear operators on $XK$ are compact perturbations of (scalar multiples of) the identity; we say that a space with this property has very few operators. The space $XK$ possesses a number of additional interesting properties, most notably, it has $ell_1$ dual. Since $ell_1$ possesses the Schur property, weakly compact and norm compact operators on $XK$ coincide. Combined with the other properties of the Argyros-Haydon space, it is tempting to conjecture that such a space must necessarily have very few operators. Curiously however, the proof that $XK$ has very few operators made no use of the Schur property of $ell_1$. We therefore arrive at the following question (originally posed in cite{AH}): must a HI, $mathcal{L}_{infty}$, $ell_1$ predual with few operators (every operator is a strictly singular perturbation of $lambda I$) necessarily have very few operators? We begin by giving a detailed exposition of the original Bourgain-Delbaen construction and the generalised construction due to Argyros and Haydon. We show how these two constructions are related, and as a corollary, are able to prove that there exists some $delta > 0$ and an uncountable set of isometries on the original Bourgain-Delbaen spaces which are pairwise distance $delta$ apart. We subsequently extend these ideas to obtain our main results. We construct new Banach spaces of Bourgain-Delbaen type, all of which have $ell_1$ dual. The first class of spaces are HI and possess few, but not very few operators. We thus have a negative solution to the Argyros-Haydon question. We remark that all these spaces have finite dimensional Calkin algebra, and we investigate the corollaries of this result. We also construct a space with $ell_1$ Calkin algebra and show that whilst this space is still of Bourgain-Delbaen type with $ell_1$ dual, it behaves somewhat differently to the first class of spaces. Finally, we briefly consider shift-invariant $ell_1$ preduals, and hint at how one might use the Bourgain-Delbaen construction to produce new, exotic examples.
Supervisor: Haydon, Richard Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.581392  DOI: Not available
Keywords: Functional analysis (mathematics) ; Banach spaces ; Bourgain-Delbaen spaces ; Operator Algebras
Share: