Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581257
Title: Exploring the reactivity patterns of cationic and neutral rhodium bis-phosphine species with amine-boranes
Author: Sewell, Laura Jane
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
This thesis details the synthesis of novel Rh(I) and Rh(III) bis-phosphine fragments, and their use, along with other known rhodium species, to investigate the reactivity of amine-boranes, with a particular focus on the dehydrocoupling of the secondary amine-borane H3B.NMe2H (DMAB). Chapter 2 utilises the new mixed phosphine, PtBuiBu2, to investigate the role of the phosphine with regard to the corresponding low-coordinate organometallic species isolated. Their coordination and reactivity with amine-boranes is studied, leading to the development of a mechanism for an alkene hydroboration catalyst that employs H3B.NMe3 (TMAB). The final section of the chapter studies several fluxional processes pertinent to rhodium and iridium complexes of the model amine-borane TMAB using H/D exchange and low temperature NMR experiments. In Chapter 3, the mechanism of dehydrocoupling of DMAB is investigated in detail, employing catalysts based on the cationic bisĀ¬-phosphine Rh fragment, {Rh(PCy3)2Ln}+. A series of stoichiometric and catalytic reactions are probed using NMR spectroscopy and mass spectrometry, revealing a complex mechanistic landscape. Subtleties include: the product of dehydrocoupling, [H2BNMe2]2, acting in an autocatalytic role; and parallel dehydrogenation of DMAB by a neutral catalyst present in a low but constant concentration. The mechanism was additionally interrogated through kinetic simulations conducted by Prof. Guy C. Lloyd-Jones (University of Bristol). From this, a generic mechanistic scheme has been suggested, aspects of which can be applied to transition metal and main group systems reported to catalyse the dehydrocoupling of DMAB. The final chapter moves on from cationic rhodium fragments to investigate the reactivity of the neutral rhodium species, Rh(H)2(PCy3)2Cl and [Rh(PCy3)2Cl]2, with amine-boranes. The mechanism by which Rh(H)2(PCy3)2Cl catalyses the dehydrogenation of DMAB has been investigated through initial rate and H/D exchange experiments, leading to the proposal of a reaction scheme. Additionally, the formation and characterisation of a base-stabilised boryl species has been reported resulting from the reactivity of an amino-borane with [Rh(PCy3)2Cl]2.
Supervisor: Weller, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.581257  DOI: Not available
Keywords: Organometallic Chemistry ; Inorganic chemistry ; Rhodium ; Phosphine ; Catalysis ; Amine-Boranes ; Mechanism
Share: