Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581198
Title: Topics in Ricci flow with symmetry
Author: Buzano, Maria
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
In this thesis, we study the Ricci flow and Ricci soliton equations on Riemannian manifolds which admit a certain degree of symmetry. More precisely, we investigate the Ricci soliton equation on connected Riemannian manifolds, which carry a cohomogeneity one action by a compact Lie group of isometries, and the Ricci flow equation for invariant metrics on a certain class of compact and connected homogeneous spaces. In the first case, we prove that the initial value problem for a cohomogeneity one gradient Ricci soliton around a singular orbit of the group action always has a solution, under a technical assumption. However, this solution is in general not unique. This is a generalisation of the analogous result for the Einstein equation, which was proved by Eschenburg and Wang in their paper "Initial value problem for cohomogeneity one Einstein metrics". In the second case, by studying the corresponding system of nonlinear ODEs, we identify a class of singular behaviours for the homogeneous Ricci flow on these spaces. The singular behaviours that we find all correspond to type I singularities, which are modelled on rigid shrinking solitons. In the case where the isotropy representation decomposes into two invariant irreducible inequivalent summands, we also investigate the existence of ancient solutions and relate this to the existence and non existence of invariant Einstein metrics. Furthermore, in this special case, we also allow the initial metric to be pseudo- Riemannian and we investigate the existence of immortal solutions. Finally, we study the behaviour of the scalar curvature for this more general situation and show that in the Riemannian case it always has to turn positive in finite time, if it was negative initially. By contrast, in the pseudo-Riemannian case, there are certain initial conditions which preserve negativity of the scalar curvature.
Supervisor: Dancer, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.581198  DOI: Not available
Keywords: Differential geometry ; Ricci flow ; Ricci solitons ; homogeneous spaces ; cohomogeneity one manifolds
Share: