Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580940
Title: Magnetotransport in graphene : a study of quantum Hall breakdown, energy loss rates, and weak localization
Author: Baker, Anton Martyn Roman
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
This thesis reports magnetotransport measurements in graphene Hall bar devices. Graphene samples fabricated from different techniques (epitaxial growth on silicon carbide, exfoliation, and CVD) are measured and compared. Measurements are taken primarily using a 21T magnet, at liquid Helium 4 temperatures. The first three chapters present the background for the work. Chapter One details the motivation for the thesis, and gives a general background to carbon and the state of carbon research. Chapter Two covers the theoretical background of graphene, including the anomalous quantum Hall effect and weak localization. Chapter Three covers the synthesis of graphene and a typical procedure undertaken for device fabrication. The next three chapters report experimental results. Chapter Four presents measurements of the energy loss rates in exfoliated graphene. The mechanism of carrier energy loss is investigated, and compared to theory. Further, the breakdown of the quantum Hall effect in the device is investigated, demonstrating peak current densities far in excess of those found in the literature for exfoliated graphene. Chapter Five shows measurements comparing the carrier energy loss rates in graphene derived from the epitaxial, exfoliated and CVD fabrication techniques. An unconventional method for measuring the energy loss rate based on measuring the weak localization peak is developed, and trends in the energy loss rates with carrier density are investigated for a wide range of devices. Chapter Six reports a comparison of the decomposed weak localization scattering lengths from graphene devices derived from the epitaxial and CVD methods, and compares these to measurements from the literature. Further, a previously reported saturation of the weak localization in graphene is investigated, and demonstrated to be an experimental artefact. This thesis provides a development of the understanding, and an experimental verification, of several aspects of heat transfer in graphene. An understanding of heat transfer is of critical importance to proposed high-density nano-electronics, and bolometry applications. The high breakdown currents and observed trends in carrier density are also of significant assistance in the design of low-cost resistance metrology devices based on graphene.
Supervisor: Nicholas, Robin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.580940  DOI: Not available
Keywords: Condensed Matter Physics ; Carbon ; Magnetotransport ; Nanotechnology
Share: