Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578376
Title: Ytterbium-catalysed conjugate allylation of alkylidene malonates and enantioselective nickel-catalysed Michael additions of azaarylacetates and acetamides to nitroalkenes
Author: Fallan, Charlene
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
I. Catalytic Conjugate Allylation of Alkylidene Malonates Nucleophilic conjugate addition of allylsilanes and allylstannanes to alkylidene malonates under the action of ytterbium catalysis in the presence of hexafluoro-isopropanol has been developed. Enantioselective conjugate allylation of alkylidene malonates under ytterbium or scandium catalysis using chiral bis(oxazoline) ligands allows access to the conjugate addition products in an enantiomerically-enriched form. Furthermore, elaboration of the allylated substrates via decarboxylation and an oxidative cleavage was demonstrated. II. Catalytic Enantioselective Conjugate Addition of Azaarylacetates and Acetamides to Nitroalkenes An enantioselective nickel-catalysed Michael addition of azaarylacetates and acetamides to nitroalkenes has been developed. A range of azaaryl pronucleophiles were shown to react with a variety of nitroalkenes to generate highly functionalised Michael addition products with impressive diastereo- and enantiocontrol. A possible mechanism for this process is proposed and crystal structures of the addition products have also been attained, allowing determination of the absolute stereochemistry. Elaboration and further functionalisation of these products was also possible under a range of conditions.
Supervisor: Lam, Hon; Lusby, Paul Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.578376  DOI: Not available
Keywords: organic chemistry ; asymmetric catalysis
Share: