Use this URL to cite or link to this record in EThOS:
Title: Shock diffraction phenomena and their measurement
Author: Quinn, Mark Kenneth
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
The motion of shock waves is important in many fields of engineering and increasingly so with medical applications and applications to inertial confinement fusion technologies. The flow structures that moving shock waves create when they encounter a change in area is complex and can be difficult to understand. Previousresearchers have carried out experimental studies and many numerical studies looking at this problem in more detail. There has been a discrepancy between numerical and experimental work which had remained unanswered. One of the aims of this project is to try and resolve the discrepancy between numerical and experimental work and try to investigate what experimental techniques are suitable for work of this type and the exact way in which they should be applied. Most previous work has focused on sharp changes in geometry which induce immediate flow separation. In this project rounded corners will also be investigated and the complex flow features will be analyzed.Two geometries, namely a sharp 172 degree knife-edge and a 2.8 mm radius rounded corner will be investigated at three experimental pressure ratios of 4, 8 and 12 using air as the driver gas. This yields experimental shock Mach numbers of 1.28, 1.46 and 1.55. High-speed schlieren and shadowgraph photography with varying levels of sensitivity were used to qualitatively investigate the wave structures. Particle image velocimetry (PIV), pressure-sensitive paint (PSP) and traditional pressure transducers were used to quantify the flow field. Numerical simulations were performed using the commercial package Fluent to investigate the effect of numerical schemes on the flow field produced and for comparison with the experimental results. The sharp geometry was simulated successfully using an inviscid simulation while the rounded geometry required the addition of laminar viscosity. Reynolds number effects will be only sparsely referred to in this project as the flows under investigation show largely inviscid characteristics. As the flow is developing in time rather than in space, quotation of a distance-based Reynolds number is not entirely appropriate; however, Reynolds number based on the same spatial location but varying in time will be mentioned. The density-based diagnostics in this project were designed to have a depth of field appropriate to the test under consideration. This approach has been used relatively few times despite its easy setup and significant impact on the results. This project contains the first quantative use of PIV and PSP to shock wave diffraction. Previous studies have almost exclusively used density-based diagnostics which, although give the best impression of the flow field, do not allow for complete analysis and explanation of all of the flow features present. PIV measurements showed a maximum uncertainty of 5% while the PSP measurements showed an uncertainty of approximately 10%.The shock wave diffraction process, vortex formation, shear layer structure, secondary and even tertiary expansions and the shock vortex interaction were investigate. The experimental results have shown that using one experimental technique in isolation can give misleading results. Only by using a combination of experimental techniques can we achieve a complete understanding of the flow field and draw conclusions on the validity of the numerical results. Expanding the range of the experimental techniques currently in use is vital for experimental aerodynamic testing to remain relevant in an industry increasingly dominated by numerical research. To this end, significant research work has been carried out on extending the range of the PSP technique to allow for the capture of shock wave diffraction, one of the fastest transient fluid processes, and for applications to low-speed flow (< 20 ms−1).
Supervisor: Kontis, Konstantinos Sponsor: EPSRC ; Rolls Royce
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Shock Waves ; Shock Tube ; Pressure Sensitive Paint ; Particle Image Velocimetry ; Pressure Sensitive Paint ; Shadowgraph ; Schlieren ; Flow Diagnostics ; Numerical Simulations ; Unsteady Flow ; Compressible Flow