Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576282
Title: Discovery of novel antibacterial and antitubercular compounds using chemical genetics and computational approach targeted at phospholipid biosynthesis
Author: Tiong, John
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Bacterial membranes undergo dynamic rearrangements during cell division with lateral heterogeneity in phospholipid distribution. An understanding of the synthesis of the cell membrane can provide a basis for the rational design of new antibacterial compounds which will ultimately be developed towards potential new antibiotics. Mounting evidence is implicating the importance of phospholipid in the viability of mycobacteria. The genetically tractable and related organism, Streptomyces coelicolor represents an ideal model for analogous studies on Mycobacteria tuberculosis for the purpose of designing novel classes of anti-tuberculosis drugs targeting the phospholipid biosynthesis pathways. Genetic and biochemical studies carried out on phosphatidylserine synthase (Pss) and phosphatidylserine decarboxylase (Psd) demonstrated the essentiality of these membrane proteins in S. coelicolor. Alteration of pss expression affects the overall growth and morphology of S. coelicolor (i.e. hyphal growth, branching, septation and sporulation) therefore verified the potential of these proteins as drug targets. Although, the early stage "hit identification" approach using a modest collection of compounds was unsuccessful, further screening of relevant compounds should continue. Structural modifications should be carried out on some of the initial compounds which were devoid of antibacterial activity in order to address the possible pharmacodynamic issues. Protein X-ray crystallography or saturation transfer difference - nuclear magnetic resonance (STD-NMR) spectroscopy of these proteins should also be considered in the event of further futile attempts.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.576282  DOI: Not available
Share: