Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.575947
Title: Ionisation induced collapse of minihaloes
Author: Back, Trevor
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The first stars, galaxies and black holes in the universe produced large quantities of ionising UV radiation; forming H II regions in the neutral gas before the Epoch of Reionisation (EoR). These ionisation fronts will have come into contact with overdensities in the surrounding Intergalactic Medium (IGM), including haloes which were in the process of collapse. Previous studies have shown that the feedback processes on these secondary haloes can either disrupt the gas, or induce further cooling from the formation of molecular hydrogen. The ionising source will eventually die and create a defunct H II region, which expands into the surrounding neutral IGM. Minihaloes at the edge of these defunct H II regions are particularly susceptible to positive feedback due to not having been photoevaporated like their counterparts further inside the ionised volume. In this thesis, numerical simulations of minihaloes at the edges of H II regions formed by the first luminous objects before the EoR are presented. A methodology of including secondary ionisations from high energy photons is also implemented into the radiation hydrodynamical code ZEUS-RT. The interaction of differing spectral index sources with minihaloes including secondary ionisation is discussed. The secondary ionisations show the greatest effect for hard spectral sources with a large fraction of high energy photons; where a decrease in photoheating and an increase in ionisation rate is found at the outer reaches of the ionisation front (I-front). The increased ionisation rate lowers the optical depth of the gas for subsequent photons, and thus reduces the trapping of I-fronts in high densities found in the minihalo cores. The ratio of the free electron fraction to the temperature in the core of the minihaloes is found to constrain the resulting evolution. A high ratio is correlated with the creation of molecular hydrogen, which can then induce further cooling and the collapse of the system.A large parameter suite of 3780 two-dimensional minihalo models utilising radiative hydrodynamical simulations with 12 species and a coupled reaction network, including H2 cooling, HD cooling, Lyman-Werner radiation and secondary ionisation is performed. The parameter space includes: the spectral index representing different sources such as quasars or galaxies, the mass of the minihaloes from 105 - 106 Mʘ, the redshift of ionisation from z ~ 10 - 30, and other factors which denote the position of the minihalo relative to the boundary of the H II region. Minihaloes with average core densities of n0 = 2 - 10 cm-3 show almost unanimous positive feedback, while the majority of minihaloes under this average density are disrupted. Minihaloes with core densities above this value generally would have collapsed in isolation anyway, but are found to not be delayed by the I-front. The H2 fraction in the minihalo gas is also increased in models with no blowout by factors between 2 - 100 times that of an isolated minihalo. This is especially significant for lower redshift, z ≤ 15, minihaloes. Finally, a parameter suite of larger 106 - 107 Mʘ minihaloes results in the creation of self-gravitating clumps of gas moving out of the dark matter potential. The gas core is compressed by the I-front, enriched with molecular hydrogen, and ejected by the pressure front after the source dies. These "baryon bullets" could be progenitors of primordial globular clusters found in the haloes of galaxies today. Properties such as old stellar populations and the lack of dark matter haloes can be explained by this radiative ejection method. The dynamical nature of these interacting systems and diversity of subsequent evolution suggest that minihaloes less than 108 Mʘ are important in the early formation history of the universe, and in determining the constraining parameters of the EoR. The feedback mechanisms investigated, and secondary ionisation physics, should be included in astrophysical simulations and analytical calculations determining the evolution of the universe at this critical epoch.
Supervisor: Meiksin, Avery; Best, Philip Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.575947  DOI: Not available
Keywords: reionisation ; feedback ; baryon bullets ; Pop III
Share: