Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.575503
Title: Data mining techniques and breast cancer prediction : a case study of Libya
Author: Abdull, Mohamed A. Salem
Awarding Body: Sheffield Hallam University
Current Institution: Sheffield Hallam University
Date of Award: 2011
Availability of Full Text:
Full text unavailable from EThOS. Restricted access.
Please contact the current institution’s library for further details.
Abstract:
Different forms of cancer have been widely studied and documented in various studies across the world. However, there have not been many similar studies in the developing countries - particularly those on the African continent (Parkin, et al., 2005). This thesis seeks to uncover the geo-demographic occurrence patterns of the disease by applying three Data mining Techniques, namely Logistic Regression (LR), Neural Networks (NNs) and Decision Trees (DTs), to learn the underlying rules in the overall behaviour of breast cancer. The data, 3,057 observations on 29 variables obtained from four cancer treatment centres in Libya (2004- 2008), were interrogated using multiple K-folds cross validation. The predictive strategy yielded a list of breast cancer predictor factors ordered according to their importance in predicting the disease. Comparison between our results and those obtainable from conventional LR, NN and DT models shows that our strategy out-performs the conventional variable selection. It is expected that the findings from this thesis will provide an input into comparative geo-ethnic studies of cancer and provide informed intervention guidelines in the prevention and cure of the disease, not only in Libya but also in other parts of the world.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.575503  DOI: Not available
Share: