Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574304
Title: Impact of ICT reliability and situation awareness on power system blackouts
Author: Panteli, Mathaios
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Recent major electrical disturbances highlight the extent to which modern societies depend on a reliable power infrastructure and the impact of these undesirable events on the economy and society. Numerous blackout models have been developed in the last decades that capture effectively the cascade mechanism leading to a partial or complete blackout. These models usually consider only the state of the electrical part of the system and investigate how failures or limitations in this system affect the probability and severity of a blackout.However, an analysis of the major disturbances that occurred during the last decade, such as the North America blackout of 2003 and the UCTE system disturbance of 2006, shows that failures or inadequacies in the Information and Communication Technology (ICT) infrastructure and also human errors had a significant impact on most of these blackouts.The aim of this thesis is to evaluate the contribution of these non-electrical events to the risk of power system blackouts. As the nature of these events is probabilistic and not deterministic, different probabilistic techniques have been developed to evaluate their impact on power systems reliability and operation.In particular, a method based on Monte Carlo simulation is proposed to assess the impact of an ICT failure on the operators’ situation awareness and consequently on their performance during an emergency. This thesis also describes a generic framework using Markov modeling for quantifying the impact of insufficient situation awareness on the probability of cascading electrical outages leading to a blackout. A procedure based on Markov modeling and fault tree analysis is also proposed for assessing the impact of ICT failures and human errors on the reliable operation of fast automatic protection actions, which are used to provide protection against fast-spreading electrical incidents. The impact of undesirable interactions and the uncoordinated operation of these protection schemes on power system reliability is also assessed in this thesis.The simulation results of these probabilistic methods show that a deterioration in the state of the ICT infrastructure and human errors affect significantly the probability and severity of power system blackouts. The conclusion of the work undertaken in this research is that failures in all the components of the power system, and not just the “heavy electrical” ones, must be considered when assessing the reliability of the electrical supply.
Supervisor: Crossley, Peter Sponsor: Engineering and Physical Science Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.574304  DOI: Not available
Keywords: Power Systems ; Reliability Assessment of Power Systems ; Information and Communication Technologies (ICT) ; Situation Awareness ; System Integrity Protection Schemes ; Wide-area Protection ; Power System Blackouts
Share: