Title:

Structural solutions to maximum independent set and related problems

In this thesis, we study some fundamental problems in algorithmic graph theory. Most natural problems in this area are hard from a computational point of view. However, many applications demand that we do solve such problems, even if they are intractable. There are a number of methods in which we can try to do this: 1) We may use an approximation algorithm if we do not necessarily require the best possible solution to a problem. 2) Heuristics can be applied and work well enough to be useful for many applications. 3) We can construct randomised algorithms for which the probability of failure is very small. 4) We may parameterize the problem in some way which limits its complexity. In other cases, we may also have some information about the structure of the instances of the problem we are trying to solve. If we are lucky, we may and that we can exploit this extra structure to find efficient ways to solve our problem. The question which arises is  How far must we restrict the structure of our graph to be able to solve our problem efficiently? In this thesis we study a number of problems, such as Maximum Indepen dent Set, Maximum Induced Matching, StableII, Efficient Edge Domina tion, Vertex Colouring and Dynamic EdgeChoosability. We try to solve problems on various hereditary classes of graphs and analyse the complexity of the resulting problem, both from a classical and parameterized point of view.
