Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572641
Title: Comparing stochastic discrete and deterministic continuum models of cell migration
Author: Yates, Christian
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Multiscale mathematical modelling is one of the major driving forces behind the systems biology revolution. The inherently interdisciplinary nature of its study and the multiple spatial and temporal scales which characterise its dynamics make cell migration an ideal candidate for a systems biology approach. Due to its ease of analysis and its compatibility with the type of data available, phenomenological continuum modelling has long been the default framework adopted by the cell migration modelling community. However, in recent years, with increased computational power, complex, discrete, cell-level models, able to capture the detailed dynamics of experimental systems, have become more prevalent. These two modelling paradigms have complementary advantages and disadvantages. The challenge now is to combine these two seemingly disparate modelling regimes in order to exploit the benefits offered by each in a comprehensive, multiscale equivalence framework for modelling cell migration. The main aim of this thesis is to begin with an on-lattice, individual-based model and derive a continuum, population-based model which is equivalent to it in certain limits. For simple models this is relatively easy to achieve: beginning with a one-dimensional, discrete model of cell migration on a regular lattice we derive a partial differential equation for the evolution of cell density on the same domain. We are also able to simply incorporate various signal sensing dynamics into our fledgling equivalence framework. However, as we begin to incorporate more complex model attributes such as cell proliferation/death, signalling dynamics and domain growth we find that deriving an equivalent continuum model requires some innovative mathematics. The same is true when considering a non-uniform domain discretisation in the one-dimensional model and when determining appropriate domain discretisations in higher dimensions. Higher-dimensional simulations of individual-based models bring with them their own computational challenges. Increased lattice sites in order to maintain spatial resolution and increased cell numbers in order to maintain consistent densities lead to dramatic reductions in simulation speeds. We consider a variety of methods to increase the efficiency of our simulations and derive novel acceleration techniques which can be applied to general reaction systems but are especially useful for our spatially extended cell migration algorithms. The incorporation of domain growth in higher dimensions is the final hurdle we clear on our way to constructing a complex discrete-continuum modelling framework capable of representing signal-mediated cell migration on growing (possibly non-standard) domains in multiple dimensions.
Supervisor: Maini, Philip K. ; Baker, Ruth E. ; Erban, Radek Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.572641  DOI: Not available
Keywords: Mathematics ; Mathematics ; Biology and other natural sciences (mathematics) ; General mathematics ; Mathematical biology ; Partial differential equations ; cell migration ; equivalence framework ; discrete ; continuum ; stochastic ; deterministic ; position-jump ; non-uniform domain
Share: