Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.571770
Title: Modelling critical care unit activities through queueing theory
Author: Komenda, Izabela
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Critical Care Units (CCUs) are one of the most complex and expensive of all medical resources and hospital managers are challenged to meet the demand for critical care services with adequate capacity. The pressure on critical care beds is continuously increasing as new medical equipment provides the opportunity to save more patients lives. It is therefore crucial that beds are managed well and used efficiently. This thesis describes two major projects, the first undertaken in conjunction with the CCU at the University Hospital of Wales in Cardiff (UHW); and the second with two CCUs from the Aneurin Bevan Health Board. In the first project data has been analysed to determine the flow of patients through the Unit. Admissions to CCUs were categorised under two headings: emergency, and elective. The length of stay in the CCU is heavily dependent on the admission category. In this thesis, both computer simulation and theoretical queueing models have been considered, which show how improvements in bed management may be achieved by considering these two categories of patients separately. The vast majority of previous literature in this field is concerned only with steady-state conditions, whereas in reality the processes are time-dependent. This thesis goes some way to addressing this deficiency. The second project relates to work undertaken with managers from the Royal Gwent Hospital in Newport and at the Nevill Hall Hospital in Abergavenny. Data from both hospitals have been analysed to define arrival and service processes. A state-dependent theoretical queueing model has been considered which has been used to investigate the significance of combining the two units. The model has been also utilised to advise on the number of beds the new combined unit should have in order to satisfy targets quoted by the hospital managers. In the final part of the thesis, consideration has been given to the impact of collaboration, or lack thereof, between hospitals using a game theoretical approach. The effect of patient diversion has been studied. To formally investigate the impact of patients transfers, a Markov chain model of the two CCUs has been set-up, each admitting two arrival streams: namely, their own patients and transfers from other hospital. Four different models were considered and for each model the effect of targets, demand and capacity were studied. The efficiency of a system which degrades due to selfish behaviour of its agents has been measured in terms of Price of Anarchy.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.571770  DOI: Not available
Keywords: QA Mathematics
Share: