Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570615
Title: Diamond and GaN waveguides and microstructures for integrated quantum photonics
Author: Zhang, Yanfeng
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Quantum optics has been a frontier of physics in the last few decades. Integrated quantum photonics which prompts the concept of realizing quantum optics operation on a chip is crucial for any potential applications beyond the optical bench. This thesis focuses on two important material systems (diamond and GaN) which both have the potential for integration of single photon sources and detectors with integrated quantum circuits and at the same time can minimize the footprint of the integrated quantum circuits due to their high refractive index. We have proposed and realized two new masking methods to fabricating higher aspect ratio diamond microlenses through plasma etching. We have also proposed and demonstrated a new approach to fabricating large cross-section edge-coupled rib waveguides on free-standing thin diamond substrates by combining inkjet printing of photoresist with photolithographic patterning technique. Single-mode GaN directional couplers with transmission varying between 0.1:0.9 and 0.55:0.49 have been studied and two-photon interference was demonstrated in a 0.55:0.45 GaN directional coupler. This is the first demonstration of two-photon interference realized on a compound semiconductor chip. Our work opens up a new way to achieve sophisticated integrated quantum photonic circuits based on GaN and other suitable compound semiconductors. Integrated quantum photonics is a widespread research topic, currently undergoing explosive developments. Future options including an all-diamond platform, III-V semiconductors or a hybrid system between diamond and III- V semiconductors are discussed as perspectives.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.570615  DOI: Not available
Share: