Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570572
Title: Jet fuel spray characterisation using optical methods : an experimental study of high speed fuel injection systems in small rotary engines
Author: Zakaria, Rami
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This thesis was initiated by the need to develop a stable low vibration engine with a high power to weight ratio. A new rotary (Wankel) engine was chosen to meet these requirements. A further operating criterion was that the engine was required to use JP8 (aviation fuel). The difficulty created by the use of JP8 is that its combustion temperature is higher than other conventional fuels, and preheating is necessary, especially in the case of cold start. Thus, the question posed was, could a more appropriate and efficient method of fuel delivery be devised? This thesis presents the design and construction of a fluid spray visualisation system for investigating the macroscopic and microscopic characteristics of fuel sprays using low injection pressure up to 10 bar (1 MPa). Laser imaging techniques have been used for data acquisition. The thesis has been divided into several aspects. Firstly, a background study of fluid sprays and fuel injection strategies was carried out. This has centred on the relationship between droplet size and the combustion process. It further investigated what differentiated the fuel delivery approach to Wankle from that to other engines. Secondly, two families of fuel injector were tested and evaluated within the optical engineering laboratory using deionised water (DI) water for safety reasons. The first family involved conventional gasoline injectors with several nozzle arrangements. The second family involved medical nebulisers with several nozzle diameters. The evaluation of the fuel injectors required developing a fluid delivery circuit, and a specific ECU (Electronic Control Unit) for controlling pulse delivery and imaging instrument. The company associated with the project then set up a test cell for performing experiments on JP8 fuel. The initial global visualisation of the jet spray was made using a conventional digital camera. This gave a measurement of the spray angle and penetration length. However, as the study moved to the more precise determination of the fuel spray particulate size, a specialised Nd:YAG laser based diagnostic was created combined with a long range diffraction limited microscope. Microscopic characterisation of the fuel sprays was carried out using a backlight shadowgraph method. The microscopic shadowgraphy method was applied successfully to resolve droplets larger than 4 microns in diameter. The spray development process during an individual fuel injection cycle was investigated, presenting the frequency response effect of electronic fuel injectors (EFI) on the spray characteristics when operating at high injection frequencies (0.25 -­‐ 3.3 kHz). The velocity distribution during the different stages of an injection cycle was investigated using PIV. The influence of the injection pressure on the spray pattern and droplet size was also presented. Novel fluid atomisation systems were investigated for the capability of generating an optimum particulate distribution under low pressure. Finally, it was found that a new electronic medical nebuliser (micro-­‐dispenser) could be used to deliver the fuel supply with the relevant particle size distribution at low flow rate and high injection frequency. However, as yet it has not been possible to apply this approach to the engine; it is hoped that it will yield a more efficient method of cold starting the engine. The characteristics of this atomiser can be applied to provide a controllable fuel supply approach for all rotary engines to improve their fuel efficiency. The second part of this research discusses the droplets-­‐light interaction using Mie scattering for fluid droplets smaller than the microscope visualisation limit (4 microns). Mie scattering theory was implemented into Three-­‐Components Particle Image Velocimetry (3C-­‐ PIV) tests to address a number of problems associated with flow seeding using oil smoke. Mie curves were used to generate the scattering profile of the oil sub-­‐micron droplets, and therefore the scattering efficiency can be calculated at different angles of observation. The results were used in jet flow PIV system for the determination of the optimum position of the two cameras to generate balanced brightness between the images pairs. The brightness balance between images is important for improving the correlation quality in the PIV calculations. The scattering efficiency and the correlation quality were investigated for different seeding materials and using different interrogation window sizes.
Supervisor: Not available Sponsor: University of Warwick ; Cubewano Ltd
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.570572  DOI: Not available
Keywords: TJ Mechanical engineering and machinery ; TL Motor vehicles. Aeronautics. Astronautics
Share: