Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569322
Title: Synthesis and reactions of sulfinimines
Author: Sasraku-Neequaye, Leonid Kotei
Awarding Body: University of East Anglia
Current Institution: University of East Anglia
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
A large majority of drugs and drug candidates incorporate amine functionality and these include important compounds such as morphine, quinine and nicotine. N-Sulfinyl-imines (sulfinimines) are a versatile class of intermediates in organic synthesis particularly for the preparation of amines and amine derivatives. We herein report an efficient and cost effective one-pot synthesis of sulfinimines in enantiopure form (>99.8% ee) and in relatively high yields. In our investigations, we developed the scheme that involves the use of 1,2,3-oxathiazolidine-2-oxide derived from (1R, 2S)-(-)-norephedrine as a chiral auxiliary. Opening of the 1,2,3-oxathiazolidine-2-oxide with a mesityl Grignard reagent followed by treatment of the crude mixture with lithium hexamethyldisilasane afforded the mestyl sulfinamide in 72% yield and 76% recovery of the chiral auxiliary. As an extension to this scheme, when the crude reaction mixture obtained after addition of the lithium hexamethyldisilasane was treated with 1.1 equivalents of an aldehyde and three (3) equivalents of Ti(OEt)4 afforded the corresponding mesityl sulfinimines in high yields (>30 – 60%) and excellent enantiomeric excess (>99.8%). This to our knowledge is the first ever 3-step, one-pot syntheses of enantiopure sulfinimines using chiral aminoalcohol derived 1,2,3-oxathiazolidine-2-oxide as a chiral auxiliary. The mesitylsulfinamide thus produced was utilised in a novel free radical cyclisation reaction to yield mesitylsulfinyl protected enantiopure aminoindane in 68% yield.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.569322  DOI: Not available
Share: