Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568461
Title: Complex numbers from 1600 to 1840
Author: Willment, D.
Awarding Body: Middlesex University
Current Institution: Middlesex University
Date of Award: 1985
Availability of Full Text:
Access from EThOS:
Abstract:
This thesis uses primary and secondary sources to study advances in complex number theory during the 17th and 18th Centuries. Some space is also given to the early 19th Century. Six questions concerning their rules of operation, usage, symbolism, nature, representation and attitudes to them are posed in the Introduction. The main part of the thesis quotes from the works of Descartes, Newton, Wallis, Saunderson, Maclaurin, d'Alembert, Euler, Waring, Frend, Hutton, Arbogast, de Missery, Argand, Cauchy, Hamilton, de Morgan, $ylvester and o~hers, mainly in chronological order, with comment and discussion. More attention has been given tp algebraists, the originators of most advances in complex numbers, than to writers in trigonometry, calculus and analysis, who tended to be users of them. The last chapter summarises the most imoortant points and considers the extent to which the six questions have been resolved. The most important developments during the period are identified as follows the advance in status of complex numbers from 'useless' to 'useful' their interpretation by Wallis, Argand and Gauss in arithmetic, geometric and algebraic ways the discovery that they are essential for understanding polynomials and logarithmic, exponential and trigonometric functions the extension of trigonometry, calculus and analysis into the complex number field the discovery that complex numbers are closed under exponentiation, and so under all algebraic operations partial reform of nomenclature and symbolism the eventual extension of complex number theory to n dimensions In spite of the advances listed above, it is noted that there was a continued lack of confidence in complex numbers and avoidance of them by some mathematicians, particularly in England.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.568461  DOI: Not available
Share: