Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.567248
Title: Long-wavelength gravitational waves and cosmic acceleration
Author: Schluessel, Edmund Rudolph
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Multiple observations of distant type Ia supernovae show the deceleration parameter of the universe is negative. The standard cosmological model states expansion should be slowing down. A new theory is presented which explains cosmic acceleration only through the action of well-supported phenomena in the context of Einstein's general theory of relativity through the use of the Bianchi type IX homogeneous,closed cosmology. The evidence for acceleration is assessed and previously-unreported biases and insuffiencies in the evidence are revealed and discussed. The Einstein equations for the Bianchi type IX cosmology are solved to quadratic order in a matter-dominated universe. The first terms of a power-series solution are given for arbitrarily strong growing mode of gravitational waves in a matter-dominated Bianchi IX universe. The effect of these waves on the energy density of the universe is shown to becompatible with available data. The equations for redshift anisotropy in the Bianchi IX universe are solved to quadratic order. Reported anomalous structure in the cosmic microwave back-ground is considered in the light of these solutions. The Bianchi IX universe is shown to provide an explanation for these anomalies compatible with the CMB. In order to help typify a new class of standard sour es for determining cosmological parameters, a formula relating the time-dependent detection of light by a massive, compact binary such as a super-massive black hole binary is derived. This formula is applied to the system 3C66B and finds that in ideal circumstances, the best available observational techniques would detect a time-dependent omponent to the bending of light by the core of 3C66B. A solution for the Einstein equations in the Bianchi IX universe is found which explains cosmic acceleration while remaining compatible with the CMB and other cosmological parameters as reported by WMAP.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.567248  DOI: Not available
Keywords: QB Astronomy
Share: