Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566395
Title: An image segmentation and registration approach to cardiac function analysis using MRI
Author: Shi, Wenzhe
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Cardiovascular diseases (CVDs) are one of the major causes of death in the world. In recent years, significant progress has been made in the care and treatment of patients with such diseases. A crucial factor for this progress has been the development of magnetic resonance (MR) imaging which makes it possible to diagnose and assess the cardiovascular function of the patient. The ability to obtain high-resolution, cine volume images easily and safely has made it the preferred method for diagnosis of CVDs. MRI is also unique in its ability to introduce noninvasive markers directly into the tissue being imaged(MR tagging) during the image acquisition process. With the development of advanced MR imaging acquisition technologies, 3D MR imaging is more and more clinically feasible. This recent development has allowed new potentially 3D image analysis technologies to be deployed. However, quantitative analysis of cardiovascular system from the images remains a challenging topic. The work presented in this thesis describes the development of segmentation and motion analysis techniques for the study of the cardiac anatomy and function in cardiac magnetic resonance (CMR) images. The first main contribution of the thesis is the development of a fully automatic cardiac segmentation technique that integrates and combines a series of state-of-the-art techniques. The proposed segmentation technique is capable of generating an accurate 3D segmentation from multiple image sequences. The proposed segmentation technique is robust even in the presence of pathological changes, large anatomical shape variations and locally varying contrast in the images. Another main contribution of this thesis is the development of motion tracking techniques that can integrate motion information from different sources. For example, the radial motion of the myocardium can be tracked easily in untagged MR imaging since the epi- and endocardial surfaces are clearly visible. On the other hand, tagged MR imaging allows easy tracking of both longitudinal and circumferential motion. We propose a novel technique based on non-rigid image registration for the myocardial motion estimation using both untagged and 3D tagged MR images. The novel aspect of our technique is its simultaneous use of complementary information from both untagged and 3D tagged MR imaging. The similarity measure is spatially weighted to maximise the utility of information from both images. The thesis also proposes a sparse representation for free-form deformations (FFDs) using the principles of compressed sensing. The sparse free-form deformation (SFFD) model can capture fine local details such as motion discontinuities without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate smooth as well as discontinuous deformations in 2D and 3D CMR image sequences. Compared to the standard FFD approach, a significant increase in registration accuracy can be observed in datasets with discontinuous motion patterns. Both the segmentation and motion tracking techniques presented in this thesis have been applied to clinical studies. We focus on two important clinical applications that can be addressed by the techniques proposed in this thesis. The first clinical application aims at measuring longitudinal changes in cardiac morphology and function during the cardiac remodelling process. The second clinical application aims at selecting patients that positively respond to cardiac resynchronization therapy (CRT). The final chapter of this thesis summarises the main conclusions that can be drawn from the work presented here and also discusses possible avenues for future research.
Supervisor: Edwards, Eddie ; Rueckert, Daniel Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.566395  DOI: Not available
Share: