Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566391
Title: Urban pluvial flood forecasting
Author: Simoes, Nuno Eduardo da Cruz
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Two main approaches to enhance urban pluvial flood prediction were developed and tested in this research: (1) short-term rainfall forecast based on rain gauge networks, and (2) customisation of urban drainage models to improve hydraulic simulation speed. Rain gauges and level gauges were installed in the Coimbra (Portugal) and Redbridge (UK) catchment areas. The collected data was used to test and validate the approaches developed. When radar data is not available urban pluvial flooding forecasting can be based on networks of rain gauges. Improvements were made in the Support Vector Machine (SVM) technique to extrapolate rainfall time series. These improvements are: enhancing SVM prediction using Singular Spectrum Analysis (SSA) for pre-processing data; combining SSA and SVM with a statistical analysis that gives stochastic results. A method that integrates the SVM and Cascade-based downscaling techniques was also developed to carry out high-resolution (5-min) precipitation forecasting with longer lead time. Tests carried out with historical data showed that the new stochastic approach was useful for estimating the level of confidence of the rainfall forecast. The integration of the cascade method demonstrates the possibility of generating high-resolution rainfall forecasts with longer lead time. Tests carried out with the collected data showed that water level in sewers can be predicted: 30 minutes in advance (in Coimbra), and 45 minutes in advance (in Redbridge). A method for simplifying 1D1D networks is presented that increases computational speed while maintaining good accuracy. A new hybrid model concept was developed which combines 1D1D and 1D2D approaches in the same model to achieve a balance between runtime and accuracy. While the 1D2D model runs in about 45 minutes in Redbridge, the 1D1D and the hybrid models both run in less than 5 minutes, making this new model suitable for flood forecasting.
Supervisor: Maksimovic, Cedo ; Sa Marques, Alfeu Sponsor: Fundacao para a Ciencia e a Tecnologia
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.566391  DOI: Not available
Share: