Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566204
Title: Characterisation of silicon photonics devices
Author: Leung, David
Awarding Body: City University
Current Institution: City, University of London
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Silicon based integrated circuits has been dominating the electronics technology industry in the last few decades. As the telecommunications and the computing industry slowly converges together, the need for a material to build photonics integrated circuits (PIC) that can be cost-effective and be produced in mass market has become very important. This thesis describes and outlines the characteristics of high index contrast waveguides as a building blocks that can be designed, fabricated and employed on devices in silicon photonics. Initially in this work, a fully vectorial H-field based finite element method has been used to obtain the modal characteristics of high index contrast bent waveguide to get a better understanding of the curved section. Through the beam propagation method, the propagation losses and the spot-size along the propagation distance are obtained when a mode from the straight guide is launched into a bent guide. It is also learnt that mode beating exists at the junction of a straight-to-bent waveguide, in which higher order modes will also be generated. It will be shown in this work that power do exchange between the two polarization states, therefore the polarization conversion, the power losses and the bending losses will be investigated. It will also shown in here that by applying lateral offsets with coupled waveguides of unequal widths, the insertion loss can be reduced. Secondly, for a high index contrast waveguide such as the silicon strip waveguide with a nanoscale cross-section, modes in such waveguide are not purely TE or TM but hybrid in nature, with all the six components of their E and H-fields being present. Therefore a detail analysis of the modal field profiles along with the Poynting vector profile will be shown. The effects of waveguide's width and height on the effective indices, the hybridness, the modal effective area and the power confinement in the core or cladding has been studied. Furthermore the modal birefringence of such strip waveguide will be shown. It will be presented that for a strip waveguide with height of 260 nm, single mode exists in the region of the width being 200 nm to 400 nm and that the modal effective is at its minimum when width is around 320 nm for both polarization states. Thirdly, a compact polarization rotator with an asymmetric waveguide structure design, suitable for fabrication that does not require a slanted side wall or curved waveguide is considered in this work. It will be shown in here that due to the hybrid nature of the asymmetric waveguide design, maximum polarization rotation (from TE to TM) will be achieve by enhancing the non-dominant field profile of both polarized fundamental mode. As the modal hybridness and the propagation constants of both polarized modes will be obtained, the half-beat length, polarization conversion and polarization cross-talk will be calculated by using the FEM and the least squares residual boundary method (LSBR). It is learnt that a compact single stage polarization rotator with a device length of 48 μm with more than 99% of polarization conversion is achieved in this work. Finally, a study of vertical and horizontal slot waveguide will be shown. Based on silicon strip waveguide, a detail modal characteristics of E and H-fields along with the Poynting vectors are presented. It will be shown that for slot waveguide, high power confinement and power density will be achieved in the slot area. It will be presented that by optimising the waveguide and slot dimension, the performance of the power confinement and power density in the slot region can be improved.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.566204  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General)
Share: