Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.565359
Title: Smart knives : controlled cutting schemes to enable advanced endoscopic surgery
Author: Lu, I.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2011
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
With the backdrop of the rapidly developing research in Natural Orifice Transluminal Endoscopic Surgery (NOTES), analysis of the literature supported the view that inventing new, controlled tissue dissection methods for flexible endoscopic surgery may be necessary. The literature also confirmed that white space exists for research into and the development of new cutting tools. The strategy of “deconstructing dissection” proposed in this thesis may provide dissection control benefits, which may help address the unique manoeuvring challenges for tissue dissection at flexible endoscopy. This assertion was supported by investigating six embodiments of the strategy which provided varying degrees of enhanced tissue dissection control. Seven additional concepts employing the strategy which were not prototyped also were offered as potential solutions that eventually might contribute evidence in defence of the strategy. One concept for selective ablation — dye-mediated laser ablation — was explored in-depth by theoretical analysis, experimentation and computation. The ablation process was found to behave relatively similar to unmediated laser ablation, but also to depend on cyclic carbonisation for sustained ablation once the dye had disappeared. An Arrhenius model of carbonisation based on the pyrolysis and combustion of wood cellulose was used in a tissue ablation model, which produced reasonable results. Qualitative results from four methods for dye application and speculation on three methods for dye removal complete the framework by which dye-mediated laser ablation might deliver on the promise offered by “deconstructing dissection”. Overall, this work provided the “deconstructing dissection” strategic framework for controlled cutting schemes and offered plausible evidence that the strategy could work by investigating embodiments of the scheme. In particular, dye-mediated laser ablation can provide selective ablation of tissue, and a theoretical model for the method of operation was offered. However, some practical hurdles need to be overcome before it can be useful in a clinical setting.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.565359  DOI: Not available
Share: