Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564921
Title: Dynamic models of brain imaging data and their Bayesian inversion
Author: Sousa Cardoso Costa Marreiros, A.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This work is about understanding the dynamics of neuronal systems, in particular with respect to brain connectivity. It addresses complex neuronal systems by looking at neuronal interactions and their causal relations. These systems are characterized using a generic approach to dynamical system analysis of brain signals - dynamic causal modelling (DCM). DCM is a technique for inferring directed connectivity among brain regions, which distinguishes between a neuronal and an observation level. DCM is a natural extension of the convolution models used in the standard analysis of neuroimaging data. This thesis develops biologically constrained and plausible models, informed by anatomic and physiological principles. Within this framework, it uses mathematical formalisms of neural mass, mean-field and ensemble dynamic causal models as generative models for observed neuronal activity. These models allow for the evaluation of intrinsic neuronal connections and high-order statistics of neuronal states, using Bayesian estimation and inference. Critically it employs Bayesian model selection (BMS) to discover the best among several equally plausible models. In the first part of this thesis, a two-state DCM for functional magnetic resonance imaging (fMRI) is described, where each region can model selective changes in both extrinsic and intrinsic connectivity. The second part is concerned with how the sigmoid activation function of neural-mass models (NMM) can be understood in terms of the variance or dispersion of neuronal states. The third part presents a mean-field model (MFM) for neuronal dynamics as observed with magneto- and electroencephalographic data (M/EEG). In the final part, the MFM is used as a generative model in a DCM for M/EEG and compared to the NMM using Bayesian model selection.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.564921  DOI: Not available
Share: