Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564893
Title: Resource allocation for delay constrained wireless communications
Author: Chen, J.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The ultimate goal of future generation wireless communications is to provide ubiquitous seamless connections between mobile terminals such as mobile phones and computers so that users can enjoy high-quality services at anytime anywhere without wires. The feature to provide a wide range of delay constrained applications with diverse quality of service (QoS) requirements, such as delay and data rate requirements, will require QoS-driven wireless resource allocation mechanisms to efficiently allocate wireless resources, such as transmission power, time slots and spectrum, for accommodating heterogeneous mobile data. In addition, multiple-input-multiple-output (MIMO) antenna technique, which uses multiple antennas at the transmitter and receiver, can improve the transmission data rate significantly and is of particular interests for future high speed wireless communications. In the thesis, we develop smart energy efficient scheduling algorithms for delay constrained communications for single user and multi-user single-input-single-output (SISO) and MIMO transmission systems. Specifically, the algorithms are designed to minimize the total transmission power while satisfying individual user’s QoS constraints, such as rate, delay and rate or delay violation. Statistical channel information (SCI) and instantaneous channel state information (CSI) at the transmitter side are considered respectively, and the proposed design can be applied for either uplink or downlink. We propose to jointly deal with scheduling of the users that access to the channel for each frame time (or available spectrum) and how much power is allocated when accessing to the channel. In addition, the algorithms are applied with modifications for uplink scheduling in IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX). The success of the proposed research will significantly improve the ways to design wireless resource allocation for delay constrained communications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.564893  DOI: Not available
Share: