Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564869
Title: Molecular dynamics simulations of complex systems including HIV-1 protease
Author: Kenway, O. A.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Advances in supercomputer architectures have resulted in a situation where many scientific codes are used on systems whose performance characteristics differ considerably from the platform they were developed and optimised for. This is particularly apparent in the realm of Grid computing, where new technologies such as MPIg allow researchers to connect geographically disparate resources together into virtual parallel machines. Finding ways to exploit these new resources efficiently is necessary both to extract the maximum benefit from them, and to provide the enticing possibility of enabling new science. In this thesis, an existing general purpose molecular dynamics code (LAMMPS) is extended to allow it to perform more efficiently in a geographically distributed Grid environment showing considerable performance gains as a result. The technique of replica exchange molecular dynamics is discussed along with its applicability to the Grid model and its benefits with respect to increasing sampling of configurational space. The dynamics of two sub-structures of the HIV-1 protease (known as the flaps) are investigated using replica exchange molecular dynamics in LAMMPS showing considerable movement that would have been difficult to investigate by traditional methods. To complement this, a study was carried out investigating the use of computational tools to calculate binding affinity between HIV-1 protease mutants and the drug lopinavir in comparison with results derived experimentally by other research groups. The results demonstrate some promise for computational methods in helping to determine the most effective course of treatment for patients in the future.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.564869  DOI: Not available
Share: