Use this URL to cite or link to this record in EThOS:
Title: Optical sampling and metrology using a soliton-effect compression pulse source
Author: McDonald, G. J.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Access through Institution:
A low jitter optical pulse source for applications including optical sampling and optical metrology was modelled and then experimentally implemented using photonic components. Dispersion and non-linear fibre effects were utilised to compress a periodic optical waveform to generate pulses of the order of 10 picoseconds duration, via soliton-effect compression. Attractive features of this pulse source include electronically tuneable repetition rates greater than 1.5 GHz, ultra-short pulse duration (10-15 ps), and low timing jitter as measured by both harmonic analysis and single-sideband (SSB) phase noise measurements. The experimental implementation of the modelled compression scheme is discussed, including the successful removal of stimulated Brillouin scattering (SBS) through linewidth broadening by injection dithering or phase modulation. Timing jitter analysis identifies many unwanted artefacts generated by the SBS suppression methods, hence an experimental arrangement is devised (and was subsequently patented) which ensures that there are no phase modulation spikes present on the SSB phase noise spectrum over the offset range of interest for optical sampling applications, 10Hz-Nyquist. It is believed that this is the first detailed timing jitter study of a soliton-effect compression scheme. The soliton-effect compression pulses are then used to perform what is believed to be the first demonstration of optical sampling using this type of pulse source. The pulse source was also optimised for use in a novel optical metrology (range finding) system, which is being developed and patented under European Space Agency funding as an enabling technology for formation flying satellite missions. This new approach to optical metrology, known as Scanning Interferometric Pulse Overlap Detection (SIPOD), is based on scanning the optical pulse repetition rate to find the specific frequencies which allow the return pulses from the outlying satellite, i.e. the measurement arm, to overlap exactly with a reference pulse set on the hub satellite. By superimposing a low frequency phase modulation onto the optical pulse train, it is possible to detect the pulse overlap condition using conventional heterodyne detection. By rapidly scanning the pulse repetition rate to find two frequencies which provide the overlapping pulse condition, high precision optical pulses can be used to provide high resolution unambiguous range information, using only relatively simple electronic detection circuitry. SIPOD’s maximum longitudinal range measurement is limited only by the coherence length of the laser, which can be many tens of kilometres. Range measurements have been made to better than 10 microns resolution over extended duration trial periods, at measurement update rates of up to 470 Hz. This system is currently scheduled to fly on ESA’s PROBA-3 mission in 2012 to measure the intersatellite spacing for a two satellite coronagraph instrument. In summary, this thesis is believed to present three novel areas of research: the first detailed jitter characterisation of a soliton-effect compression source, the first optical sampling using such a compression source, and a novel optical metrology range finding system, known as SIPOD, which utilises the tuneable repetition rate and highly stable nature of the compression source pulses.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available