Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564625
Title: Structural and functional analysis of a phospho-dependent molecular switch : Rv1827 from Mycobacterium tuberculosis
Author: Nott, T. J.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Forkhead-associated (FHA) domains have gained considerable prominence as ubiquitous phosphothreonine-dependent binding modules; however, their precise roles in Ser/Thr kinase pathways and mechanisms of regulation remain unclear. From experiments with Rv1827, an FHA domain–containing protein from Mycobacterium tuberculosis, a complete molecular description of an FHA-mediated Ser/Thr protein kinase signalling process is derived. First, binding of the FHA domain to each of three metabolic enzyme complexes regulates their catalytic activities but does not require priming phosphorylation. However, phosphorylation of a threonine residue within a conserved N-terminal motif of Rv1827 triggers its intramolecular association with the FHA domain of Rv1827, thus blocking its interactions with each of the three enzymes. The nuclear magnetic resonance structure of this inactivated form and further mutagenic studies show how a novel intramolecular phospho-switch blocks the access of the target enzymes to a common FHA interaction surface and how this shared surface accommodates three functionally related, but structurally diverse, binding partners. Thus a remarkable and unsuspected versatility in the FHA domain that allows for the transformation of multiple kinase inputs into various downstream regulatory signals has been revealed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.564625  DOI: Not available
Share: