Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.563674
Title: Geochemical fingerprinting of Icelandic silicic Holocene tephra layers
Author: Meara, Rhian Hedd
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The overall aim of this research project has been to develop a reference dataset of 19 Holocene silicic Icelandic tephra layers sourced from the Torfajökull, Askja, Katla, Öræfajökull and Hekla volcanic systems. The dataset comprises geochemical data (including major, trace and rare earth element data for bulk and glass phases collected by XRF, electron microprobe, ion probe and laser ablation ICP-MS) and physical data (including sedimentary logs, field photographs, distribution maps and GPS localities of reference sections). Results indicate that Icelandic volcanic systems show unique geochemical signatures which result from the systems proximity to the active rifting zone and the proposed upwelling mantle plume that underlies the island. Within individual volcanic systems, eruptions produce tephra with distinct geochemical characteristics, which allow for the independent confirmation of tephra identity. The identification and discrimination of tephra layers can in some cases be achieved using major element chemistry (e.g. Hekla, H1104 – H5) while other tephra layers can only be discriminated using trace element chemistry (e.g. Torfajökull, Landnám and Gràkolla). Certain tephra layers however show near-identical geochemistry and therefore discrimination is not possible (e.g. Hekla, HA, HB, HC, HM, HN, HX, HY, HZ) without the incorporation of other proxy data. Icelandic micro-tephra horizons are identified in soil, lacustrine and marine sedimentary sequences and are used for dating and correlation in Quaternary studies. Data collected for this project will facilitate reliable data comparison and tephra identification between proximal and distal localities across the North Atlantic region. The data may also contribute to the debate regarding the formation of silicic rocks within Iceland, particularly with regard to the Hekla central volcano. The geochemical data collected for this thesis shows distinct age-dependant geochemical sub-groups suggesting temporal sub-surface relocation of the Hekla magma source.
Supervisor: Thordarson, Thorvaldur. ; Fitton, Godfrey. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.563674  DOI: Not available
Keywords: Iceland ; silicic ; fingerprint ; tephra
Share: