Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.562899
Title: Examination of the toxicity and inflammatory potential of multi-walled carbon nanotubes in vitro and in vivo
Author: Sternad, Karl Alexander
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2010
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The rise of nanotechnology industries has led to the design and production of new nano-scaled materials such as quantum dots, nano-metals, carbon nanotubes, fullerenes and a myriad of functionalised derivatives. Extensive work concerning well characterised pathogenic fibres has led to the development of a fibre paradigm that suggests respirable fibres vary in their ability to cause disease based on length and pulmonary bio-persistence. Induction of oxidative stress is also a central plank of the mechanism used to explain inflammatory, fibrotic and carcinogenic effects of fibres. The toxicity of different particle types has consistently been shown to depend upon particle size and surface area, reactive surface molecular groups, metal content, organic content and the presence of endotoxins. A growing body of work has begun to examine the potential pathogenicity of carbon nanotubes to the pulmonary system as a consequence of superficial similarities to known pathogenic particle and fibres. The aim of this thesis was to investigate the potential toxicity of two commercially manufactured multi-walled carbon nanotubes (MWCNT) compared to a panel of low and high toxicity particles and fibres. The pro-inflammatory nature of MWCNT was examined in vitro and in vivo to determine the effects they may exert in the pulmonary system. In aqueous solutions of phosphate buffered saline, saline and cell culture medium (with or without foetal calf serum supplementation) MWCNT were found to exist as tight aggregates even after sonication. Analysis of metal content of MWCNT by ICP-AES revealed the presence of a low percentage of non extractable residual iron. From analysis of MWCNT by electron spin resonance (ESR) the CNT were found to be ready producers of a free radical species, despite this MWCNT were not able to cleave plasmid DNA. Upon incubation with the alveolar epithelial cell line A549 MWCNTs did not cause noticeable toxicity but did dose dependently deplete total glutathione levels. No increase in production of the pro-inflammatory cytokine IL-8 could be detected at the level of protein or at the level of mRNA. Analysis of the levels (protein and mRNA) of the pro-fibrotic mediator TGF-β did not indicate induction of a fibrotic response to MWCNT. Neither were MWCNTs found to consistently activate the pro-inflammatory associated transcription factor nuclear factor kappa B (NF-κB). Upon instillation into the peritoneal cavity of mice MWCNT failed to induce a pro-inflammatory response in contrast to long amosite asbestos that induced an extensive inflammatory reaction. Analysis of the diaphragms of exposed animals revealed the induction by MWCNT of an apparent foreign body type reaction. Overall with limited processing and dispersion MWCNT were morphologically more akin to particles than fibres. Although apparently able to spontaneously generate ROS in aqueous solution this did not translate into a capacity to cause toxicity or a capacity to induce inflammation either in vitro or in vivo.
Supervisor: Donaldson, Ken. Sponsor: University of Edinburgh ; MRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.562899  DOI: Not available
Keywords: fibre paradigm ; pulmonary bio-persistence ; oxidative stress ; pathogenic fibres ; multi-walled carbon nanotubes
Share: